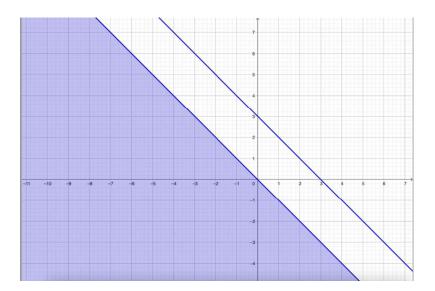
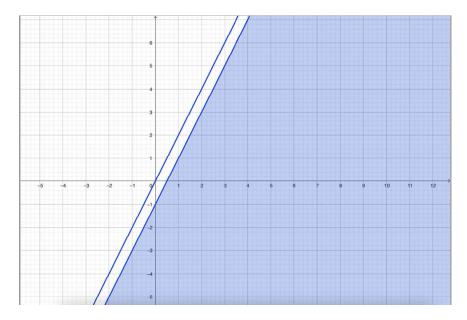
La programación lineal



b) Veamos la información de la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = 2x - y = 0$	(0, 0)	$2x - y \ge 0$	$P(1,0)$: $-1 \ge 0$	No
$r_2 = 2x - y = 1$	(1/2, 0) y (0, -1)	$2x - y \ge 1$	$P(0,0)$: $0 \ge 1$	No

El recinto solución es la región abierta de la figura.

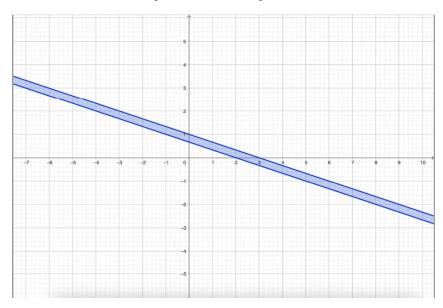


d) Veamos la información de la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = x + 3y = 3$	(3, 0) y (0, 1)	$x + 3y \le 3$	0 ≤ 3	Sí
$r_2 = x + 3y = 2$	(2, 0) y (0, 3/2)	$x + 3y \ge 2$	0 ≥ 2	No

La programación lineal

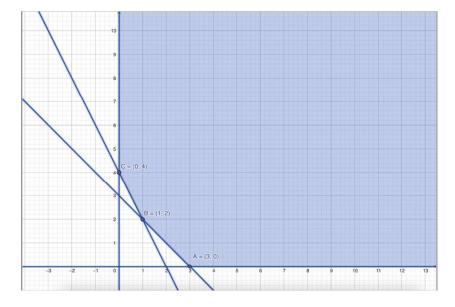
El recinto solución es la región abierta de la figura.



e) Veamos la información de la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = x + y = 3$	(3, 0) y (0, 3)	$x + y \ge 3$	0 ≥ 3	No
$r_2 = 2x + y = 4$	(2, 0) y (0, 4)	$2x + y \ge 4$	0 ≥ 4	No

El recinto solución viene dado por región abierta de la figura con vértices en A(3, 0), B(1, 2) y C(0, 4).



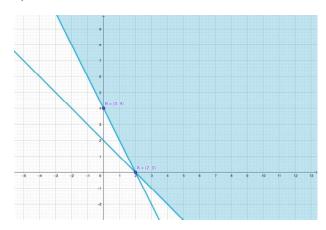
La programación lineal

26. Dibuja el recinto solución de los siguientes sistemas de inecuaciones. Halla los vértices y analiza si se trata de una región cerrada o abierta.

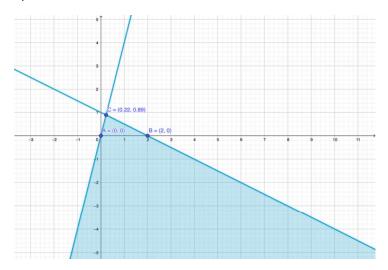
$$a) \begin{cases} 2x + y \ge 4 \\ x + y \ge 2 \end{cases} \quad b) \begin{cases} x + 2y \le 2 \\ 4x - y \ge 0 \end{cases}$$

b)
$$\begin{cases} x + 2y \le 2 \\ 4x - y \ge 0 \end{cases}$$

a)

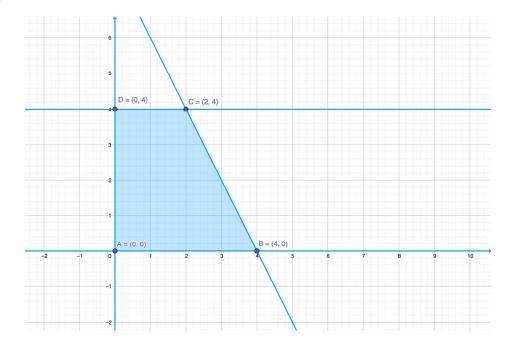


b)



27. Halla un sistema de inecuaciones cuya solución sea el recinto limitado por el paralelogramo de vértices (0,0), (4,0), (2,4) y (0,4).

La programación lineal



La recta que pasa por A(0,0) y B(4,0) es: y=0

La recta que une
$$B(4,0)$$
 y $C(2,4)$ es: $\frac{y-4}{0-4} = \frac{x-2}{4-2} \Longrightarrow 2y-8 = -4x+8 \Longrightarrow 2x+y=8$

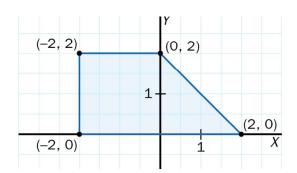
Mientras que la recta que pasa por $C(2,4)_y D(0,4)_{,y \text{ por }} A(0,0)_y D(0,4)_{\text{ son, respectivamente,}}$ la recta horizontal $y=4_y$ la recta vertical $x=0_y$.

Como el paralelogramo está situado en el primer cuadrante y, además, el punto de prueba P(0,0) está en él, entonces el sistema de inecuación correspondiente es:

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 2x + y \le 8 \\ y \le 4 \end{cases}$$

28. Encuentra un sistema de inecuaciones que tenga por recinto solución el de la siguiente figura:

La programación lineal



Si llamar r_1 a la recta que une (-2,0) y (2,0), r_2 a la que une (2,0) y (0,2), r_3 a la recta que pasa por (0,2) y (-2,2) y, finalmente, r_4 la recta que une (-2,2) y (-2,0), entonces:

$$r_1: y = 0$$

$$r_2: \frac{y-2}{0-2} = \frac{x-0}{2-0} \Longrightarrow 2y-4 = -2x \Longrightarrow x+y=2$$

$$r_3: y = 2$$

$$r_4: x = -2$$

A continuación, elegimos un punto interior del recinto, por ejemplo P(0,1) y lo introducimos en cada una de las rectas para decidir qué inecuación verificar. Así:

$$_{\mathsf{En}} r_1 : 1 \ge 0 \Longrightarrow y \ge 0$$

$$_{\mathsf{En}} r_2 : 1 \le 2 \Longrightarrow x + y \le 2$$

$$_{\mathsf{En}} r_3 : 1 \le 2 \Rightarrow y \le 2$$

$$_{\mathsf{En}} r_4: 0 \ge -2 \Longrightarrow x \ge -2$$

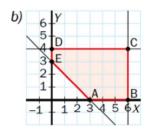
El sistema de inecuaciones buscado es:

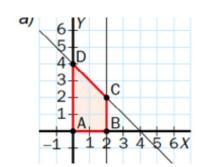
$$\begin{cases} y \ge 0 \\ x + y \le 2 \\ y \le 2 \\ x \ge -2 \end{cases}$$

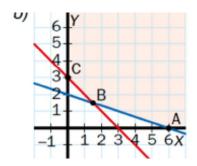
29. Halla un sistema de inecuaciones cuya solución sea la región de la figura.

La programación lineal









Se trata de una región del x y, por tanto, $x \ge 0$, $y \ge 0$. Además es un triángulo delimitado por los vértices A (0, 0) , B (4, 0) y C (0, 5). Así:

$$\frac{y-0}{5-0} = \frac{x-4}{0-4} \Rightarrow \frac{y}{5} = \frac{x-4}{-4} \Rightarrow \frac{y}{5} = \frac{x-4}{5} \Rightarrow \frac{y}{5} = \frac{x}{5} \Rightarrow \frac{x}{$$

$$\Rightarrow$$
 $-4y = 5x - 20 \Rightarrow 5x + 4y = 20$

Como el punto P (0, 0) está en la región, entonces la inecuación es de la forma $5x + 4y \le 20.$ Por tanto, el sistema de inecuaciones correspondiente a esa región es: $\begin{cases} 5x + 4y \le 20 \\ x \ge 0 \\ y \ge 0. \end{cases}$

b) En este caso la región está delimitada por el polígono A (3, 0) , B (6, 0), C (6, 4), D (0, 4) y E (0, 3). Calculamos las tres rectas \overline{AE} , \overline{BC} y \overline{CD} del primer cuadrante $(x \ge 0, y \ge 0)$.

• Recta
$$\frac{y-0}{AE}$$
: $\frac{y-0}{3-0} = \frac{x-3}{0-3} \Rightarrow -3y = 3x-9 \Rightarrow$

$$\Rightarrow$$
 3x + 3y = 9 \Rightarrow x + y = 3

• Recta
$$\overline{BC}$$
: $x = 6$

• Recta
$$\overline{CD}$$
: $y = 4$

La programación lineal

Por tanto, el sistema que representa a la región de la figura es:

$$\begin{cases} x+y \ge 3 \\ x \le 6 \\ y \le 4 \\ x \ge 0, y \ge 0 \end{cases} \Rightarrow \begin{cases} x+y \ge 3 \\ 0 \le x \le 6 \\ 0 \le y \le 4. \end{cases}$$

c) La región queda delimitada por el polígono A (0, 0), B (2, 0), C (2, 2) y D (0, 4).

Como se encuentra en el primer cuadrante, entonces $x \ge 0$, $y \ge 0$.

La recta \overline{BC} es una linea vertical: x = 2.

Mientras que la recta \overline{CD} es:

$$\frac{y-4}{2-4} = \frac{x-0}{2-0} \Rightarrow 2y-8 = -2x \Rightarrow$$

$$\Rightarrow$$
 2x + 2y = 8 \Rightarrow x + y = 4.

Como el punto (0, 0) pertenece a la región, entonces la inecuación es: $x+y \le 4$.

$$\begin{cases} x + y \le 2 \\ x \le 2 \\ x \ge 0, y \ge 0 \end{cases}$$

El sistema es:

d) Se trata de la región abierta del primer cuadrante de vértices A(6, 0), B (3/2, 3/2) y C(0, 3).

- Recta \overline{BC} corta a los ejes en los puntos (3, 0) y (0, 3) y tiene de ecuación: $\frac{y-3}{0-3} = \frac{x-0}{3-0} \Rightarrow 3y-9 = -3x \Rightarrow 3x+3y=9 \Rightarrow x+y=3$
- Recta \overline{AE} : corta a los ejes en los puntos (6, 0) y (0, 2) y tiene por ecuación:

$$\frac{y-2}{0-2} = \frac{x-0}{6-0} \Rightarrow 6y-12 = -2x \Rightarrow$$

$$\Rightarrow$$
 2x + 6y = 12 \Rightarrow x + 3y = 6

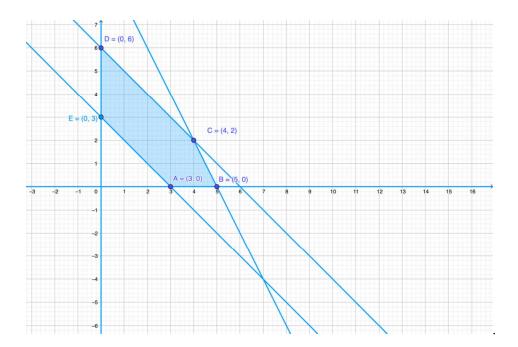
En consecuencia, como el punto P (0, 0) no está en la región las inecuaciones xxx de la forma $x+y\geq 3$ y $x+3y\geq 6$

La programación lineal

Así:
$$\begin{cases} x+y \ge 3 \\ +3 \ge 6 \\ x \ge 0, y \ge 0. \end{cases}$$

30. Calcula los vértices de la región solución del siguiente sistema de inecuaciones:

$$\begin{cases} x + y \le 6 \\ 2x + y \le 10 \\ x + y \ge 3 \\ x \ge 0 \\ y \ge 0 \end{cases}$$



Los vértices de la región factible son A(3,0) , B(5,0) , C(4,2) , D(0,6) y E(0,3) . Donde el vértice C es la solución del sistema:

$$\begin{cases} x + y = 6 \\ 2x + y = 10 \end{cases} \Rightarrow x = 4, y = 2$$

31. Representa gráficamente los siguientes sistemas de inecuaciones y halla los vértices:

La programación lineal

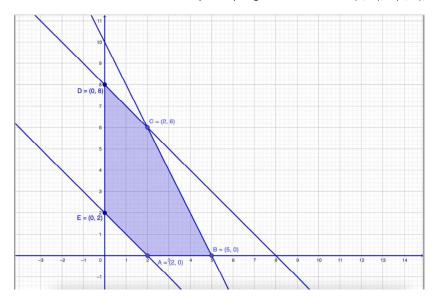
a)
$$\begin{cases} x + y \le 8 \\ 2x + y \le 10 \\ x + y \ge 2 \\ x, y \ge 0 \end{cases}$$
 b)
$$\begin{cases} x + 2y \le 10 \\ x + 2y \ge 1 \\ x + y \le 8 \\ x + y \le 2 \\ x \ge 0, y \ge 0 \end{cases}$$

Solución:

a) Veamos la información de la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = x + y = 8$	(8, 0) y (0, 8)	$x + y \le 8$	0 ≤ 8	Sí
$r_2 = 2x + y = 10$	(5, 0) y (0, 10)	$2x + y \le 10$	0 ≤ 10	Sí
$r_3 = x + y = 2$	(2, 0) y (0, 2)	$x + y \ge 2$	0 ≥ 2	No

El recinto factible será delimitada por el polígono de vértices A(2, 0), B(5, 0), C(2, 6), D(0, 8), E(0, 2).

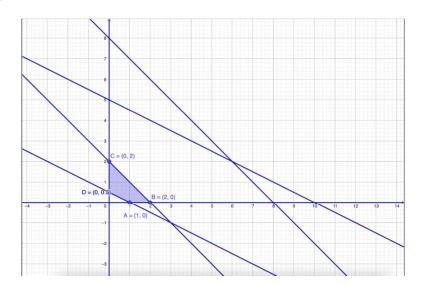


b) Veamos la información de la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = x + 2y = 10$	(10, 0) y (0, 5)	$x + y \le 10$	0 ≤ 10	Sí
$r_2 = x + 2y = 1$	(1, 0) y (0, 1/2)	$2x + y \ge 1$	0 ≥ 1	No
$r_3 = x + y = 8$	(8, 0) y (0, 8)	$x + y \le 8$	0 ≤ 8	Sí
$r_4 = x + y = 2$	(2, 0) y (0, 2)	$x + y \le 2$	0 ≤ 2	Sí

El recinto factible será delimitada por el polígono de vértices A(1, 0), B(2, 0), C(0, 2), D(0, 1/2).

La programación lineal



- 32. La Agencia Espacial Europea contará con un presupuesto de 2,4 millones de euros para financiar misiones sobre la observación de la Tierra y programas de transporte espacial. Cada misión supone una inversión de 200 000 \odot y cada programa 100 000 \odot . En la decisión final deben alcanzarse los 2 millones de euros. Por otra parte, el número de misiones debe ser, al menos, cuatro, pero no más de la mitad del número de programas.
- a) Si designamos con x el número de misiones y con y el número de programas, escribe un sistema de inecuaciones que describa el número posible de misiones y programas.
- b) Dibuja la solución y calcula los vértices.

Solución:

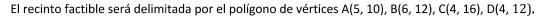
a) El enunciado da lugar al siguiente sistema de inecuaciones:

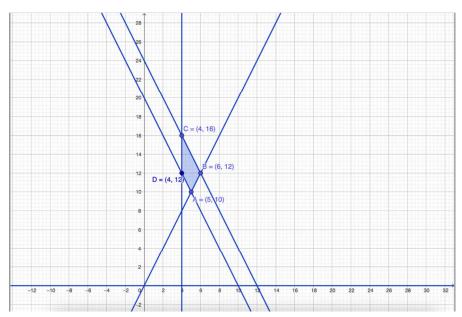
$$\begin{cases} 0.2x + 0.1y \le 2.4 \leftarrow Presupuesto \ m\'{a}ximo \\ 0.2x + 0.1y \ge 2 \leftarrow Presupuesto \ m\'{i}nimo \\ x \ge 4 \leftarrow N\'{u}mero \ de \ misiones \\ x \le y/2 \leftarrow N\'{u}mero \ de \ misiones \\ x \ge 0, y \ge 0 \end{cases} \Rightarrow \begin{cases} 2x + y \le 24 \\ 2x + 1y \ge 20 \\ x \ge 4 \\ y \le 2x \\ x \ge 0, y \ge 0 \end{cases}$$

b) Con el fin de dibujar la región factible construimos la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = 2x + y = 24$	(12, 0) y (0, 24)	$2x + y \le 24$	$P(0,0)$: $0 \le 24$	Sí
$r_2 = 2x + y = 20$	(10, 0) y (0, 20)	$2x + y \ge 20$	$P(0,0)$: $0 \ge 20$	No
$r_3 = x = 4$	(4, 0)	$x \ge 4$	$P(0,0): 0 \ge 4$	No
r ₄ = y = 2x	(0, 0)	$y \ge 2x$	$P(1,0): 0 \ge 1$	No

La programación lineal





Programación lineal

33. Dado el siguiente problema de programación lineal:

maximizar
$$z = 20x + 15y$$

s.a.
$$\begin{cases} x + 2y \le 80 \\ 3x + 2y \le 120 \\ x \ge 0, y \ge 0 \end{cases}$$

- a) Determina la región factible y los vértices de esta.
- b) Utiliza el método gráfico para resolverlo.

Solución:

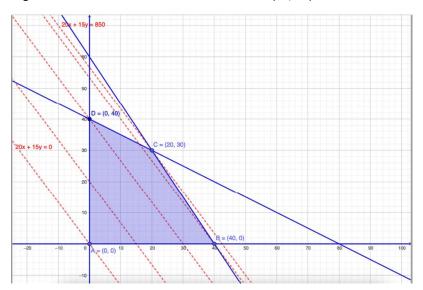
a) Para determinar la región factible nos ayudamos de la siguiente tabla:

Ecuación	Ptos. de corte	Inecuación	Pto. de prueba	Conclusión
$r_1 = x + 2y = 80$	(80, 0) y (0, 40)	$x + 2y \le 80$	0 ≤ 80	Sí
$r_2 = 3x + 2y = 120$	(40, 0) y (0, 60)	$3x + 2y \le 120$	0 ≤ 120	Sí

El recinto factible será delimitada por el polígono de vértices A(0, 0), B(40, 0), C(20, 30), D(0, 40).

La programación lineal

b) Utilizando el método gráfico desplazamos la función objetivo z = 20x + 15y paralela a sí misma solo la región factible alcanza el máximo en el vértice C(20, 30) con un valor $z_{máx} = 850$.



34. Se considera el sistema de inecuaciones lineales siguiente:

$$2x+y \leq 36$$
 , $x+3y \leq 48$, $x \geq 6, \ y \geq 4$

- a) Representa la región factible.
- b) Encuentra el punto de esa región factible en el que la función z = 7x + 5y alcanza el máximo.

Solución:

a)
$$2x + y = 36$$

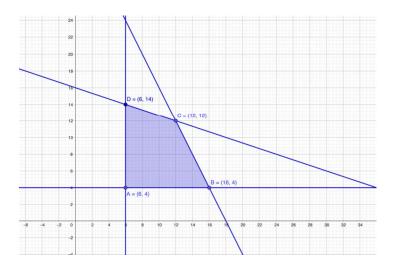
Х	У
0	36
18	0

$$x + 3y = 48$$

х	у
0	16
48	0

El recinto factible será delimitada por el polígono de vértices A(6, 4), B(16, 4), C(12, 12), D(6, 14).

La programación lineal



b)

Vértices	Valor z = 7x + 5y
A(6, 4)	62
B(16, 14)	182 <- Máximo
C(12, 12)	144
D(6, 14)	112

El máximo se alcanza en el vértice B(16, 14) y tiene un valor máximo $z_{máx}$ = 182.

35. Dado el siguiente sistema de inecuaciones

$$\begin{cases} 3x + 5y \le 45 \\ 0 \le x \le 10 \\ 0 \le y \le 6 \\ y \le 2x \end{cases}$$

- a) Calcula la región factible y sus vértices.
- b) Determina el máximo de z = x + 2y.

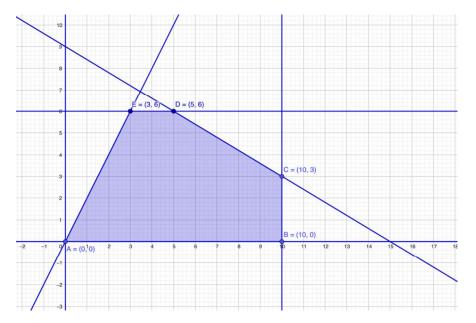
Solución:

a)
$$z: 3x + 5y = 45$$

х	у
0	9
15	0

El recinto factible será delimitada por el polígono de vértices A(0, 0), B(10, 0), C(10, 3), D(5, 6) y E(3, 6).

La programación lineal



b)

Vértices	Valor z = x + 2y
A(0, 0)	0
B(10, 0)	10
C(10, 3)	16
D(5, 6)	17<- Máximo
E(3, 6)	15

El máximo se alcanza en el vértice D(5, 6) y tiene un valor máximo $z_{máx}$ = 17.

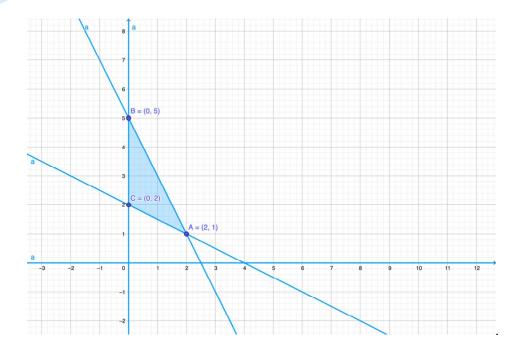
36. Resuelve el problema de programación lineal siguiente:

$$\mathbf{Maximizar} \ z = 4x + y$$

$$\begin{cases} 2x + y \le 5 \\ x + 2y \ge 4 \end{cases}$$

s.a. $(x, y \ge 0)$

La programación lineal



La región factible queda limitada por el triángulo de vértices A(2,1), B(0,5) y C(0,2). Siendo A el punto de intersección del sistema:

$$\begin{cases} 2x + y = 5 \\ x + 2y = 4 \end{cases} \Rightarrow x = 2, y = 1$$

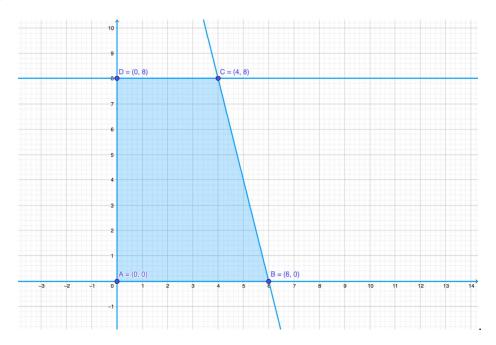
Veamos el valor de la función objetivo en los vértices del triángulo

Vértices	Valor de $z = 4x + y$
A(2,1)	9 ← Máximo
B(0,5)	5
C(0,2)	2

La función objetivo alcanza el máximo en el vértice A(2,1) con un valor $z_{M\!a\!x}=9$.

37. La función objetivo de un problema de programación lineal es z=3x+7y, y la región factible está delimitada por el polígono de vértices $A(0,0)\,B(6,0)$, $C(4,8)\,$ y D(0,8). Determina las inecuaciones que delimitan la región factible y encuentra el valor de la función objetivo en cada uno de los vértices para determinar el máximo de la función objetivo.

La programación lineal



Comenzamos hallando las rectas que forman este polígono. Así:

La recta que pasa por AB es horizontal: y=0

La recta que pasa por los puntos B y C es:

$$\frac{y-8}{0-8} = \frac{x-4}{6-4} \Rightarrow 2y-16 = -8x+32 \Rightarrow 4x+y = 24$$

La recta CD es horizontal: y = 8

Y la recta que une A y D es vertical: x = 0

A continuación, elegimos un punto de prueba interno de la región, por ejemplo P(1,1) . Así:

$$1 \ge 0 \Longrightarrow y \ge 0$$

$$4+1=5 \le 24 \Rightarrow 4x+y \le 24$$

$$1 \le 8 \Rightarrow y \le 8$$

$$1 \ge 0 \Longrightarrow x \ge 0$$

Por tanto, el sistema de inecuaciones es:

La programación lineal

$$\begin{cases} y \ge 0 \\ 4x + y \le 24 \\ y \le 8 \\ x \ge 0 \end{cases}$$

Calculamos el valor de la función objetivo en cada uno de los vértices

Vértices	Valor de $z = 3x + 7y$
A(0,0)	0
B(6,0)	18
C(4,8)	68 ← Máximo
D(0,8)	56

El máximo de la función objetivo es 68 y se alcanza en el vértice ${\it C}(4,8)$.

38. Se dan las inecuaciones lineales siguientes:

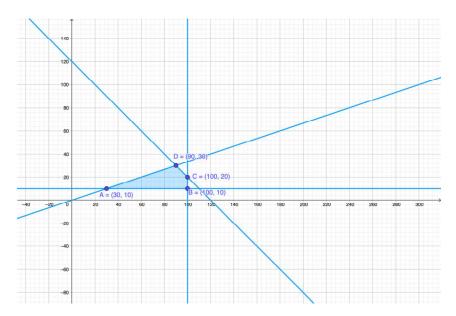
$$x + y \le 120$$
, $3y \le x$, $x \le 100$, $y \ge 10$

Representa la región factible.

¿En qué punto de esa región factible la función z=25x+20y alcanza el máximo?

a)

La programación lineal



La región factible queda delimitada por los vértices A(30,10) , B(100,10) , C(100,20) y D(90,30)

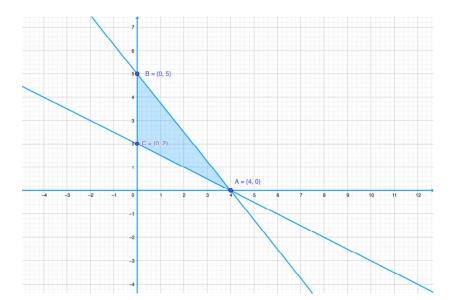
Vértices	Valor de z = 25x + 20y
A(30,10)	950
B(100,10)	2700
C(100, 20)	2900 ← Máximo
D(90,30)	2850

La función z = 25x + 20y alcanza el máximo en el vértice C(100, 20) con un valor de 2900.

39. Halla el mínimo y el máximo de la siguiente función objetivo: z=30-x-y

$$\begin{cases} x + 2y \ge 4 \\ 5x + 4y \le 20 \\ x \ge 0, y \ge 0 \end{cases}$$

La programación lineal



La región factible queda limitada por el triángulo de vértices A(4,0) , B(0,5) y C(0,2) .

El valor de la función objetivo en los vértices viene dado en la siguiente tabla:

Vértices	Valor de $z = 30 - x - y$
A(4,0)	26
B(0,5)	25 ← Mínimo
C(0,2)	28 ← Máximo

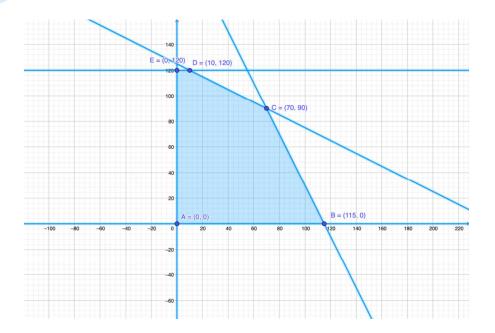
$$\overline{z_{Min}} = 25$$
 en el vértice $B(0,5)$

$$z_{\text{M\'ax}} = 28$$
 en el vértice $C(0,2)$

40. Determina el máximo y el mínimo de la función objetivo z = 2x + 4y en la región factible determinada por las inecuaciones:

$$2x + y \le 230, x + 2y \le 250, y \le 120, x \ge 0, y \ge 0$$

La programación lineal



La región factible tiene por vértices A(0,0), B(115,0), C(70,90), D(10,120) y E(0,120)

Ahora, calculamos el valor de la función objetivo en los vértices

Vértices	Valor de $z = 2x + 4y$
A(0,0)	0
B(115,0)	230 ← Mínimo
C(70,90)	500 ← Máximo
D(10,120)	500 ← Máximo
E(0,120)	480

El máximo se alcanza en los infinitos puntos de la arista CD con un valor en todos ellos de $z_{\rm M\'{e}x}=500$. Por su parte, el mínimo se alcanza en el vértice B(115,0) y con un valor $z_{\rm M\'{i}n}=230$.

41. Dado el siguiente problema de programación lineal:

$$\begin{cases} 2x + 3y \le 6 \\ x - 2y \ge -2 \\ x, y \ge 0 \end{cases}$$
s.a.

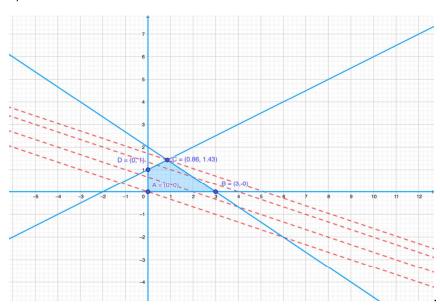
Resuélvelo gráficamente y determina la solución óptima.

Si se introduce la restricción: $y \le 1,5$, ¿cuál es la solución óptima?

La programación lineal

Analiza gráficamente qué ocurre si en la función objetivo el coeficiente 1 pasa a ser 2, es decir, z=2x+3y . ¿Cuál es la solución en este caso?

a)



El máximo se alcanza en el vértice

$$C\left(\frac{6}{7}, \frac{10}{7}\right)_{\text{con un valor}} z_{\text{max}} = \frac{36}{7}$$

Al introducir esta restricción no cambia la región factible y, por tanto, la solución óptima es la misma.

